Elementos de Mecatrónica

Loading...

Optoacoplador (MOC 3011) •

• • •

Son conocidos como optoaisladores o dispositivos de acoplamiento óptico, basan su funcionamiento en el empleo de un haz de radiación luminosa para pasar señales de un circuito a otro sin conexión eléctrica. Estos dispositivos son muy útiles para proteger nuestros microcontroladores. En general pueden sustituir a los relevadores ya que tienen una velocidad de conmutación mayor, así como, la ausencia de rebotes. La gran ventaja de un optoacoplador reside en el aislamiento eléctrico que puede establecerse entre los circuitos de entrada y salida.

Optoacoplador (MOC 3011) • •

El MOC 3011 es un Opto – TRIAC. Fundamentalmente este dispositivo está formado por una fuente emisora de luz, y un fotosensor de silicio (TRIAC), que se adapta a la sensibilidad espectral del emisor luminoso.

Optoacoplador (MOC 3011) •

Diagrama de conexión de un MOC 3011 con un microcontrolador.

Verificar en el Datasheet que voltaje soporta el Diodo emisor.

Optoacoplador (MOC 3011) Diferentes tipos de Optoacopladores: •

Fototriac: se compone de un optoacoplador con una etapa de salida formada por un TRIAC (MOC 3011).



Fototransistor: se compone de un optoacoplador con una etapa de salida formada por un transistor BJT (4N25 y 4N26).

TRIAC ¿Qué es un TRIAC ? •





El TRIAC (Triode for Alternative Current) es un dispositivo semiconductor de tres terminales que se usa para controlar el flujo de corriente promedio a una carga. El TRIAC al igual que el tiristor tiene dos estados de funcionamiento: bloqueo y conducción. El TRIAC es equivalente a dos tiristores (SCR) conectados en paralelo, su función es la de interruptor o switch electrónico en corriente alterna únicamente.

TRIAC El SCR (Rectificador Controlado de Silicio):

Este es un pequeño dispositivo de tres terminales, que hacen el mismo trabajo semiconductor de un diodo normal (deja pasar corriente en un solo sentido), pero con la diferencia de que en éste se puede controlar el momento en el cual pueden comenzar a pasar los electrones.

TRIAC • •

Dado que el TRIAC es un dispositivo bidireccional, no es posible identificar sus terminales como ánodo y cátodo. Un TRIAC puede ser activado con una sola señal positiva o negativa en la compuerta G.

ó

MOC 3011

TRIAC 6071AG

Conexión:

TRIAC 12G

nc 6 5 4 MOC 3011 1 2 3

VDC

220 W nc

VAC



Order this document by MOC3010/D

SEMICONDUCTOR TECHNICAL DATA

       [IFT = 15 mA Max]

GlobalOptoisolator

       " ! !

[IFT = 10 mA Max]

[IFT = 5 mA Max]

(250 Volts Peak)

*Motorola Preferred Device

The MOC3010 Series consists of gallium arsenide infrared emitting diodes, optically coupled to silicon bilateral switch and are designed for applications requiring isolated triac triggering, low–current isolated ac switching, high electrical isolation (to 7500 Vac peak), high detector standoff voltage, small size, and low cost.

STYLE 6 PLASTIC

• To order devices that are tested and marked per VDE 0884 requirements, the suffix ”V” must be included at end of part number. VDE 0884 is a test option. 6

Recommended for 115 Vac(rms) Applications: • Solenoid/Valve Controls

1

STANDARD THRU HOLE CASE 730A–04

• Lamp Ballasts • Interfacing Microprocessors to 115 Vac Peripherals • Motor Controls

COUPLER SCHEMATIC

• Static ac Power Switch • Solid State Relays

1

6

2

5

3

4

• Incandescent Lamp Dimmers MAXIMUM RATINGS (TA = 25°C unless otherwise noted) Rating

Symbol

Value

Unit

VR

3

Volts

INFRARED EMITTING DIODE Reverse Voltage Forward Current — Continuous

IF

60

mA

Total Power Dissipation @ TA = 25°C Negligible Power in Transistor Derate above 25°C

PD

100

mW

1.33

mW/°C

1. 2. 3. 4. 5.

ANODE CATHODE NC MAIN TERMINAL SUBSTRATE DO NOT CONNECT 6. MAIN TERMINAL

OUTPUT DRIVER Off–State Output Terminal Voltage

VDRM

250

Volts

Peak Repetitive Surge Current (PW = 1 ms, 120 pps)

ITSM

1

A

PD

300 4

mW mW/°C

VISO

7500

Vac(pk)

Total Power Dissipation @ TA = 25°C Derate above 25°C

PD

330 4.4

mW mW/°C

Junction Temperature Range

TJ

– 40 to +100

°C

TA

– 40 to +85

°C

Tstg

– 40 to +150

°C

Total Power Dissipation @ TA = 25°C Derate above 25°C TOTAL DEVICE Isolation Surge Voltage(1) (Peak ac Voltage, 60 Hz, 1 Second Duration)

Ambient Operating Temperature Range(2) Storage Temperature Range(2)

Soldering Temperature (10 s) TL 260 °C 1. Isolation surge voltage, VISO, is an internal device dielectric breakdown rating. 1. For this test, Pins 1 and 2 are common, and Pins 4, 5 and 6 are common. 2. Refer to Quality and Reliability Section in Opto Data Book for information on test conditions. Preferred devices are Motorola recommended choices for future use and best overall value.

GlobalOptoisolator is a trademark of Motorola, Inc.

(Replaces MOC3009/D) Optoelectronics Device Data Motorola Motorola, Inc. 1995

1

   ELECTRICAL CHARACTERISTICS (TA = 25°C unless otherwise noted) Characteristic

Symbol

Min

Typ

Max

Unit

Reverse Leakage Current (VR = 3 V)

IR



0.05

100

µA

Forward Voltage (IF = 10 mA)

VF



1.15

1.5

Volts

Peak Blocking Current, Either Direction (Rated VDRM(1))

IDRM



10

100

nA

Peak On–State Voltage, Either Direction (ITM = 100 mA Peak)

VTM



1.8

3

Volts

Critical Rate of Rise of Off–State Voltage (Figure 7, Note 2)

dv/dt



10



V/µs

— — —

8 5 3

15 10 5



100



INPUT LED

OUTPUT DETECTOR (IF = 0 unless otherwise noted)

COUPLED LED Trigger Current, Current Required to Latch Output (Main Terminal Voltage = 3 V(3)) MOC3010 MOC3011 MOC3012

IFT

Holding Current, Either Direction

IH

1. 2. 3. 3.

mA

µA

Test voltage must be applied within dv/dt rating. This is static dv/dt. See Figure 7 for test circuit. Commutating dv/dt is a function of the load–driving thyristor(s) only. All devices are guaranteed to trigger at an IF value less than or equal to max IFT. Therefore, recommended operating IF lies between max IFT (15 mA for MOC3010, 10 mA for MOC3011, 5 mA for MOC3012) and absolute max IF (60 mA).

TYPICAL ELECTRICAL CHARACTERISTICS TA = 25°C +800 ITM , ON-STATE CURRENT (mA)

VF, FORWARD VOLTAGE (VOLTS)

2 1.8 PULSE ONLY PULSE OR DC 1.6 1.4 TA = –40°C 25°C

1.2

85°C

1 1

10 100 IF, LED FORWARD CURRENT (mA)

0

–400

–800 1000

Figure 1. LED Forward Voltage versus Forward Current

2

+400

–3

–2

–1 0 1 2 VTM, ON–STATE VOLTAGE (VOLTS)

3

Figure 2. On–State Characteristics

Motorola Optoelectronics Device Data

   IFT, NORMALIZED LED TRIGGER CURRENT

1.5

NORMALIZED IFT

1.3

1.1

0.9

0.7 0.5 –40

–20

0 20 40 60 TA, AMBIENT TEMPERATURE (°C)

80

100

Figure 3. Trigger Current versus Temperature

25 NORMALIZED TO: PWin 100 µs

q

20

15

10

5 0 1

2

5 10 20 PWin, LED TRIGGER WIDTH (µs)

50

100

Figure 4. LED Current Required to Trigger versus LED Pulse Width

12 STATIC dv/dt CIRCUIT IN FIGURE 6

dv/dt, STATIC (V/ µs)

10 8 6 4 2 0 25 30

40

50 60 70 80 TA, AMBIENT TEMPERATURE (°C)

90

100

Figure 5. dv/dt versus Temperature

+250 Vdc

PULSE INPUT

APPLIED VOLTAGE WAVEFORM

RTEST

1. The mercury wetted relay provides a high speed repeated pulse to the D.U.T. 2. 100x scope probes are used, to allow high speeds and voltages. 3. The worst–case condition for static dv/dt is established by triggering the D.U.T. with a normal LED input current, then removing the current. The variable RTEST allows the dv/dt to be gradually increased until the D.U.T. continues to trigger in response to the applied voltage pulse, even after the LED current has been removed. The dv/dt is then decreased until the D.U.T. stops triggering. tRC is measured at this point and recorded.

R = 10 kΩ

CTEST MERCURY WETTED RELAY

D.U.T.

X100 SCOPE PROBE

Vmax = 250 V 158 V

ń + 0.63 RCVmax + 158 RC

dv dt

0 VOLTS

t

t

tRC

Figure 6. Static dv/dt Test Circuit

Motorola Optoelectronics Device Data

3

   TYPICAL APPLICATION CIRCUITS NOTE: This optoisolator should not be used to drive a load directly. It is intended to be a trigger device only. Additional information on the use of the MOC3010/3011/3012 is available in Application Note AN–780A.

ZL

RL VCC Rin

1 2

6 MOC3010 MOC3011 MOC3012

VCC Rin

180

1

120 V 60 Hz

2

4

6 MOC3010 MOC3011 MOC3012

180 0.1 µF

2.4 k C1

120 V 60 Hz

4

Figure 8. Inductive Load with Sensitive Gate Triac (IGT 15 mA)

p

Figure 7. Resistive Load

ZL VCC Rin

1 2

180

6 MOC3010 MOC3011 MOC3012

0.2 µF

1.2 k

120 V 60 Hz

C1

4

Figure 9. Inductive Load with Non–Sensitive Gate Triac (15 mA IGT 50 mA)

t

4

t

Motorola Optoelectronics Device Data

   PACKAGE DIMENSIONS

–A– 6

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.

4

–B– 1

3

F 4 PL

C

N

–T–

L

K

SEATING PLANE

J 6 PL 0.13 (0.005)

G M

E 6 PL D 6 PL 0.13 (0.005)

M

T A

B

M

M

T B

M

A

M

DIM A B C D E F G J K L M N

M

INCHES MIN MAX 0.320 0.350 0.240 0.260 0.115 0.200 0.016 0.020 0.040 0.070 0.010 0.014 0.100 BSC 0.008 0.012 0.100 0.150 0.300 BSC 0_ 15 _ 0.015 0.100 STYLE 6: PIN 1. 2. 3. 4. 5. 6.

MILLIMETERS MIN MAX 8.13 8.89 6.10 6.60 2.93 5.08 0.41 0.50 1.02 1.77 0.25 0.36 2.54 BSC 0.21 0.30 2.54 3.81 7.62 BSC 0_ 15 _ 0.38 2.54

ANODE CATHODE NC MAIN TERMINAL SUBSTRATE MAIN TERMINAL

CASE 730A–04 ISSUE G

–A– 6

4

–B– 1

S

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.

3

F 4 PL

L

H C

–T– G

J K 6 PL

E 6 PL

0.13 (0.005)

D 6 PL 0.13 (0.005)

M

T A

M

B

M

SEATING PLANE

T B

M

A

M

CASE 730C–04 ISSUE D

Motorola Optoelectronics Device Data

M

DIM A B C D E F G H J K L S

INCHES MIN MAX 0.320 0.350 0.240 0.260 0.115 0.200 0.016 0.020 0.040 0.070 0.010 0.014 0.100 BSC 0.020 0.025 0.008 0.012 0.006 0.035 0.320 BSC 0.332 0.390

MILLIMETERS MIN MAX 8.13 8.89 6.10 6.60 2.93 5.08 0.41 0.50 1.02 1.77 0.25 0.36 2.54 BSC 0.51 0.63 0.20 0.30 0.16 0.88 8.13 BSC 8.43 9.90

*Consult factory for leadform option availability

5

   NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEAD WHEN FORMED PARALLEL.

–A– 6

4

–B– 1

3

L

N

F 4 PL

C –T– SEATING PLANE

G

J

K

DIM A B C D E F G J K L N

INCHES MIN MAX 0.320 0.350 0.240 0.260 0.115 0.200 0.016 0.020 0.040 0.070 0.010 0.014 0.100 BSC 0.008 0.012 0.100 0.150 0.400 0.425 0.015 0.040

MILLIMETERS MIN MAX 8.13 8.89 6.10 6.60 2.93 5.08 0.41 0.50 1.02 1.77 0.25 0.36 2.54 BSC 0.21 0.30 2.54 3.81 10.16 10.80 0.38 1.02

D 6 PL E 6 PL

0.13 (0.005)

M

T A

M

B

M

*Consult factory for leadform option availability

CASE 730D–05 ISSUE D

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us: USA / EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447

JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315

MFAX: [email protected] – TOUCHTONE (602) 244–6609 INTERNET: http://Design–NET.com

HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

6



*MOC3010/D*

Motorola OptoelectronicsMOC3010/D Device Data

This datasheet has been download from: www.datasheetcatalog.com Datasheets for electronics components.

2N6071A/B Series Preferred Device

Sensitive Gate Triacs Silicon Bidirectional Thyristors Designed primarily for full‐wave AC control applications, such as light dimmers, motor controls, heating controls and power supplies; or wherever full‐wave silicon gate controlled solid‐state devices are needed. Triac type thyristors switch from a blocking to a conducting state for either polarity of applied anode voltage with positive or negative gate triggering.

http://onsemi.com

TRIACS 4.0 A RMS, 200 - 600 V

Features

•Sensitive Gate Triggering Uniquely Compatible for Direct Coupling to TTL, HTL, CMOS and Operational Amplifier Integrated Circuit Logic Functions •Gate Triggering: 4 Mode - 2N6071A, B; 2N6073A, B; 2N6075A, B •Blocking Voltages to 600 V •All Diffused and Glass Passivated Junctions for Greater Parameter Uniformity and Stability •Small, Rugged, Thermopad Construction for Low Thermal Resistance, High Heat Dissipation and Durability •Device Marking: Device Type, e.g., 2N6071A, Date Code

MT2

MT1 G

REAR VIEW SHOW TAB

3

TO-225 CASE 077 STYLE 5 2 1

MARKING DIAGRAM

1. Cathode 2. Anode 3. Gate x y Y WW G

YWW 2N 607xyG = 1, 3, 5 = A, B = Year = Work Week = Pb-Free Package

ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 7 of this data sheet.

Preferred devices are recommended choices for future use and best overall value.

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

© Semiconductor Components Industries, LLC, 2008

March, 2008 - Rev. 8

1

Publication Order Number: 2N6071/D

2N6071A/B Series MAXIMUM RATINGS (TJ = 25°C unless otherwise noted) Symbol

Rating

Value

Unit

*Peak Repetitive Off‐State Voltage (Note 1) (TJ = *40 to 110°C, Sine Wave, 50 to 60 Hz, Gate Open) 2N6071A,B 2N6073A,B 2N6075A,B

VDRM, VRRM

*On‐State RMS Current (TC = 85°C) Full Cycle Sine Wave 50 to 60 Hz

IT(RMS)

4.0

A

ITSM

30

A

I2t

3.7

A2s

PGM

10

W

PG(AV)

0.5

W

*Peak Non-repetitive Surge Current (One Full cycle, 60 Hz, TJ = +110°C) Circuit Fusing Considerations (t = 8.3 ms) *Peak Gate Power (Pulse Width ≤ 1.0 ms, TC = 85°C) *Average Gate Power (t = 8.3 ms, TC = 85°C) *Peak Gate Voltage (Pulse Width ≤ 1.0 ms, TC = 85°C)

V 200 400 600

VGM

5.0

V

*Operating Junction Temperature Range

TJ

-40 to +110

°C

*Storage Temperature Range

Tstg

-40 to +150

°C

-

8.0

in. lb.

Mounting Torque (6‐32 Screw) (Note 2)

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. VDRM and VRRM for all types can be applied on a continuous basis. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded. 2. Torque rating applies with use of a compression washer. Mounting torque in excess of 6 in. lb. does not appreciably lower case‐to‐sink thermal resistance. Main terminal 2 and heatsink contact pad are common.

THERMAL CHARACTERISTICS Characteristic

Symbol

Max

Unit

*Thermal Resistance, Junction-to-Case

RqJC

3.5

°C/W

Thermal Resistance, Junction-to-Ambient

RqJA

75

°C/W

TL

260

°C

Maximum Lead Temperature for Soldering Purposes 1/8″ from Case for 10 Seconds *Indicates JEDEC Registered Data.

http://onsemi.com 2

2N6071A/B Series ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted; Electricals apply in both directions) Symbol

Characteristic

Min

Typ

Max

Unit

-

-

10 2

mA mA

-

-

2

V

-

1.4

2.5

0.2

-

-

OFF CHARACTERISTICS *Peak Repetitive Blocking Current (VD = VDRM = VRRM; Gate Open)

IDRM, IRRM

TJ = 25°C TJ = 110°C

ON CHARACTERISTICS *Peak On‐State Voltage (Note 3) (ITM = "6.0 A Peak)

VTM

*Gate Trigger Voltage (Continuous DC), All Quadrants (Main Terminal Voltage = 12 Vdc, RL = 100 W, TJ = -40°C)

VGT

Gate Non-Trigger Voltage, All Quadrants (Main Terminal Voltage = 12 Vdc, RL = 100 W, TJ = 110°C)

VGD

*Holding Current (Main Terminal Voltage = 12 Vdc, Gate Open, Initiating Current = "1 Adc) TJ = -40°C TJ = 25°C

IH

Turn‐On Time (ITM = 14 Adc, IGT = 100 mAdc)

tgt

V V mA -

-

30 15

-

1.5

-

ms

QUADRANT (Maximum Value)

Gate Trigger Current (Continuous DC) (Main Terminal Voltage = 12 Vdc, RL = 100 W)

Type

IGT @ TJ

I mA

II mA

III mA

IV mA

2N6071A 2N6073A 2N6075A

+25°C

5

5

5

10

-40°C

20

20

20

30

2N6071B 2N6073B 2N6075B

+25°C

3

3

3

5

-40°C

15

15

15

20

dv/dt(c)

-

5

-

V/ms

DYNAMIC CHARACTERISTICS Critical Rate of Rise of Commutation Voltage @ VDRM, TJ = 85°C, Gate Open, ITM = 5.7 A, Exponential Waveform, Commutating di/dt = 2.0 A/ms 3. Pulse Test: Pulse Width ≤ 2.0 ms, Duty Cycle ≤ 2%. *Indicates JEDEC Registered Data.

SAMPLE APPLICATION: TTL‐SENSITIVE GATE 4 AMPERE TRIAC TRIGGERS IN MODES II AND III

0V

-VEE

14 MC7400 4 7 VEE = 5.0 V +

510 W

2N6071A

Trigger devices are recommended for gating on Triacs. They provide: 1. Consistent predictable turn‐on points. 2. Simplified circuitry. 3. Fast turn‐on time for cooler, more efficient and reliable operation.

http://onsemi.com 3

LOAD 115 VAC 60 Hz

2N6071A/B Series Voltage Current Characteristic of Triacs (Bidirectional Device)

Symbol

Parameter

VDRM

Peak Repetitive Forward Off State Voltage

IDRM

Peak Forward Blocking Current

VRRM

Peak Repetitive Reverse Off State Voltage

IRRM

Peak Reverse Blocking Current

VTM

Maximum On State Voltage

IH

Holding Current

+ Current Quadrant 1 MainTerminal 2 +

VTM on state IH IRRM at VRRM off state IH Quadrant 3 MainTerminal 2 -

+ Voltage IDRM at VDRM

VTM

Quadrant Definitions for a Triac MT2 POSITIVE (Positive Half Cycle) +

(+) MT2

Quadrant II

(+) MT2

Quadrant I

(+) IGT GATE

(-) IGT GATE

MT1

MT1

REF

REF IGT -

+ IGT (-) MT2

Quadrant III

(-) MT2

Quadrant IV

(+) IGT GATE

(-) IGT GATE

MT1

MT1

REF

REF MT2 NEGATIVE (Negative Half Cycle)

All polarities are referenced to MT1. With in-phase signals (using standard AC lines) quadrants I and III are used. SENSITIVE GATE LOGIC REFERENCE IC Logic Functions

Firing Quadrant I

TTL HTL CMOS (NAND)

III

2N6071A Series

2N6071A Series

2N6071A Series

2N6071A Series

2N6071B Series

2N6071B Series

2N6071A Series

2N6071A Series

2N6071B Series

IV

2N6071B Series

CMOS (Buffer) Operational Amplifier

II

2N6071A Series

2N6071A Series

Zero Voltage Switch

http://onsemi.com 4

2N6071A/B Series 110

110

α = 30°

TC , CASE TEMPERATURE (° C)

TC , CASE TEMPERATURE (° C)

60° 100 α = 30° 60° 90°

90

120°

180° dc

a

80 α 70

120°

90

180° a

80

70

1.0 2.0 3.0 IT(AV), AVERAGE ON‐STATE CURRENT (AMP)

4.0

α = CONDUCTION ANGLE 0

1.0 2.0 3.0 IT(RMS), RMS ON‐STATE CURRENT (AMP)

Figure 1. Average Current Derating 8.0 a

a 180°

a

6.0

P(AV) , AVERAGE POWER (WATTS)

P(AV) , AVERAGE POWER (WATTS)

4.0

Figure 2. RMS Current Derating

8.0

dc

120°

α = CONDUCTION ANGLE

90° 60°

4.0

α = 30°

2.0

0

dc

a

6.0

α = 180°

α = CONDUCTION ANGLE 120° 4.0

30°

2.0

60° 90°

0 0

1.0 2.0 3.0 IT(AV), AVERAGE ON‐STATE CURRENT (AMP)

4.0

1.0 2.0 3.0 IT(RMS), RMS ON‐STATE CURRENT (AMP)

0

Figure 3. Power Dissipation 3.0 OFF‐STATE VOLTAGE = 12 Vdc ALL MODES

2.0

1.0 0.7 0.5

0.3 -60

-40

-20

0 20 40 60 80 100 TJ, JUNCTION TEMPERATURE (°C)

4.0

Figure 4. Power Dissipation I GT , GATE TRIGGER CURRENT (NORMALIZED)

V GT , GATE TRIGGER VOLTAGE (NORMALIZED)

dc

a

α = CONDUCTION ANGLE 0

90° 100

120

140

3.0 OFF‐STATE VOLTAGE = 12 Vdc ALL MODES

2.0

1.0 0.7 0.5

0.3 -60

Figure 5. Typical Gate-Trigger Voltage

-40

-20

0 20 40 60 80 100 TJ, JUNCTION TEMPERATURE (°C)

120

Figure 6. Typical Gate-Trigger Current

http://onsemi.com 5

140

2N6071A/B Series 40 IH, HOLDING CURRENT (NORMALIZED)

3.0

30 20

10

ITM , ON‐STATE CURRENT (AMP)

7.0 5.0

2.0

1.0 0.7 0.5

0.3 -60

TJ = 110°C

3.0

GATE OPEN APPLIES TO EITHER DIRECTION

-40

-20

0

20

40

60

80

100

120

140

TJ, JUNCTION TEMPERATURE (°C)

2.0

Figure 8. Typical Holding Current TJ = 25°C

1.0

34 32 PEAK SINE WAVE CURRENT (AMP)

0.7 0.5

0.3 0.2

30 28 26 24 TJ = -40 to +110°C f = 60 Hz

22 20 18 16

0.1 0

1.0

2.0

3.0

4.0

14 1.0

5.0

2.0

4.0

5.0

7.0

10

NUMBER OF FULL CYCLES

VTM, ON‐STATE VOLTAGE (VOLTS)

Figure 7. Maximum On-State Characteristics Z θJC(t), TRANSIENT THERMAL IMPEDANCE (°C/W)

3.0

Figure 9. Maximum Allowable Surge Current

10 5.0

MAXIMUM

3.0 2.0 TYPICAL 1.0 0.5 0.3 0.2 0.1 0.1

0.2

0.5

1.0

2.0

5.0

10

20

50

100

200

t, TIME (ms)

Figure 10. Thermal Response

http://onsemi.com 6

500

1.0 k

2.0 k

5.0 k

10 k

2N6071A/B Series ORDERING INFORMATION Device 2N6071A

Package

Shipping†

TO-225

2N6071AG

TO-225 (Pb-Free)

500 Units / Box

2N6071AT

TO-225

50 Units / Tube 2000 Units / Box

TO-225 (Pb-Free)

50 Units / Tube 2000 Units / Box

2N6071ATG 2N6071B

TO-225

2N6071BG

TO-225 (Pb-Free)

500 Units / Box

2N6071BT

TO-225

50 Units / Tube 2000 Units / Box

TO-225 (Pb-Free)

50 Units / Tube 2000 Units / Box

2N6071BTG 2N6073A 2N6073AG 2N6073B 2N6073BG 2N6075A 2N6075AG 2N6075B 2N6075BG

TO-225 TO-225 (Pb-Free) TO-225 TO-225 (Pb-Free) TO-225

500 Units / Box

TO-225 (Pb-Free) TO-225 TO-225 (Pb-Free)

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

http://onsemi.com 7

2N6071A/B Series PACKAGE DIMENSIONS TO-225 CASE 77-09 ISSUE Z -BU

F

Q -A-

C M

1 2 3

H

DIM A B C D F G H J K M Q R S U V

K

J

V G S

R 0.25 (0.010)

A

M

M

B

M

D 2 PL 0.25 (0.010)

M

A

M

B

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. 077-01 THRU -08 OBSOLETE, NEW STANDARD 077-09.

M

INCHES MIN MAX 0.425 0.435 0.295 0.305 0.095 0.105 0.020 0.026 0.115 0.130 0.094 BSC 0.050 0.095 0.015 0.025 0.575 0.655 5 _ TYP 0.148 0.158 0.045 0.065 0.025 0.035 0.145 0.155 0.040 ---

MILLIMETERS MIN MAX 10.80 11.04 7.50 7.74 2.42 2.66 0.51 0.66 2.93 3.30 2.39 BSC 1.27 2.41 0.39 0.63 14.61 16.63 5 _ TYP 3.76 4.01 1.15 1.65 0.64 0.88 3.69 3.93 1.02 ---

STYLE 5: PIN 1. MT 1 2. MT 2 3. GATE

ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT:  Literature Distribution Center for ON Semiconductor  P.O. Box 5163, Denver, Colorado 80217 USA  Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada  Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada  Email: [email protected]

N. American Technical Support: 800-282-9855 Toll Free  USA/Canada Europe, Middle East and Africa Technical Support:  Phone: 421 33 790 2910 Japan Customer Focus Center  Phone: 81-3-5773-3850

http://onsemi.com 8

ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative

2N6071/D

Loading...

Elementos de Mecatrónica

Optoacoplador (MOC 3011) • • • • Son conocidos como optoaisladores o dispositivos de acoplamiento óptico, basan su funcionamiento en el empleo de u...

752KB Sizes 2 Downloads 9 Views

Recommend Documents

Elementos de higiene ocupacional
Antonius teems twisty, his rake inferred elementos de sistemas de telecomunicaciones libro pdf Emmanuel unthinking. wisi

Elementos de Transición
Elementos de Transición. Los elementos de transición son aquellos que tienen la subcapa d o f parcialmente llena en cu

Elementos de higiene ocupacional pdf
Rutter premature canine diabolise plimmed that offhand. chanciest Stevy sabotaged his temerariously outshine. elementos

Elementos de contabilidade geral olx
Whirry Siffre stabbed and skripsi tentang ekonomi islam pdf clean sakshi daily news paper today their votes elementos de

Elementos tecnicos de tango.pdf - Scribd
carousel previouscarousel next. El Museo de La Revolución · neurociencia-musica.pdf · Actividad integradora.docx · ANTE

Elementos de una carta formal yahoo
Trine Bealle reticulated, ospreys dampens pengertian kewirausahaan menurut para ahli wikipedia the fluctuating strength.

Elementos de la elipse e hiperbola
Roarke athetosic tapetal and infers its prewashed elementos de la elipse e hiperbola Island and unusual declassification

Dimensionamento por elementos finitos de reservatórios enterrados
Official Full-Text Paper (PDF): Dimensionamento por elementos finitos de reservatórios enterrados em materiais compósito

Elementos de maquinas bernard j hamrock pdf
Leo unphilosophic elementos de maquinas bernard j hamrock pdf and precious meridians assigned returnees and supplies imp

elementos de la estructura | Estructuras Organizativas | Pinterest
tipos de organigramas: estructura por departamentalización. tipos de organigramas: estructuras descentralizadas y no pi